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Prompt 
In an Algebra I class, a student questions the claim that a0 = 1 for all non-zero real 
number values of a.  The student asks, “How can that be possible?  I know that a0 is a 
times itself zero times, so a0 must be zero.” 
 

Commentary 
The succinct and mathematically correct answer to the student’s question presented in the 
prompt is that a0  is defined to be 1 for specific values of a. The arguments presented in 
the foci establish why this definition makes sense mathematically and why defining a0  in 
such a way allows us to be consistent with other mathematical facts. The issue that the 
student raises in the prompt may be due to viewing a0  as a numerical value. However, 
the broader perspective is that what matters is not the numerical value of the expression 
ax  but rather the characteristics properties (such as continuity) when one thinks of y = ax  
as a function. 
 

Mathematical Foci 
 
Mathematical Focus 1 
The definition of f(x) = ax can be extended from having a domain of only 
non-zero integers to a domain of all real numbers. 
 
The student appears to be drawing on a definition of exponents that is applicable only for 
exponents that are positive, whole numbers.  When the values used as exponents are 
expanded the following are taken as part of the definition of exponent: 
 
 i) 10 =a  where a is any real number not equal to zero 
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 ii)  n
n

a
a 1

=−

 
when n > 0, and a is any real number not equal to zero 

 iii) n mn
m

aa = where m is an integer, n is a positive integer, and a is a 
nonnegative real number. 
 
The extension of the definition imposes restrictions on the values that may be used for the 
base, a. 
 
Mathematical Focus 2 
00 is defined to be an indeterminate form since the values of 
lim
x→0

x0 , lim
x→0

0x , and lim
x→0

xx are not consistent with each other. 

 
The restriction on the definition a0 = 1  that a cannot be equal to zero can be explained by 
examining the three functions: 0)( xxf = , xxf 0)( = , and xxxf =)(  as the value of x 
approaches zero. lim

x→0−
(x)0 = 1 and lim

x→0+
(x)0 = 1 , thus providing some evidence that the 

value of 00  should be equal to one.  However, lim
x→0−

(0)x does not exist because the 

function does not exist for x ≤ 0 while lim
x→0+

0( )x = 0 .  Finally, although lim
x→0+

x( )x = 1 , the 

lim
x→0−

x( )x does not exist because the function is not continuous for x < 0.  We also know 

that 0n=0. If a=0, then 

€ 

an

an
=
0
0

, is an indeterminate form. 

 
 

Mathematical Focus 3 
a0 = 1 for a ≠ 0  can be explained by using properties of exponents. 
 
This scenario can be explained by using the multiplication and division properties of 
exponents. Using the division property of exponents, 

€ 

a n

a n
 is equivalent to 

€ 

an−n  or 

€ 

a0 , 
where n is any non-zero real number.   We know that 

€ 

a n

a n
=1 because of the multiplicative 

identity field property.  Therefore, because of the transitive property, a0 must equal 1, that 
is, 1 = a

n

an
= an−n = a0  . 

 
Alternatively, a fundamental property of exponentiation is that an+m = an ⋅am , for a ≠ 0 . 
Now consider the following, 
 
an = an+0 = an ⋅a0   and thus, a0 = 1 . 
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Mathematical Focus 4 
Defining a0 = 1 for a ≠ 0  is consistent with the multiplicative relationship between 
successive terms in the sequence {an} , where n is an integer and a is a non-negative real 
number. 
 
It could be helpful to look at a pattern involving the recursive nature of exponential 
growth in order to explore this question.  First consider a specific example using 
exponents with base 4. 

€ 

4−3 =
1
43

=
1
64

4−2 =
1
42

=
1
16

4−1 =
1
41

=
1
4

40 = ?
41 = 4 = 4
42 = 4 ⋅ 4 =16
43 = 4 ⋅ 4 ⋅ 4 = 64

 

 
As the exponent increases by 1, each successive term can be obtained by multiplying the 
preceding term by 4. That is, 

€ 

4n+1 = 4 ⋅ 4n.  In order for this recursive pattern to hold for 
all integer values of n, then it seems that

€ 

40 should be equal to 1. It is important to note 
here that this pattern is developed using only integer values for the value represented by 
n. This pattern still holds if the exponents considered are non-integers. Consider the 
following: 

€ 

4
−
12
5 =

1

4
12
5

4
−
7
5 =

1

4
7
5

=
1

4
12
5
−1

=
1

4
12
5

⋅ 4 = 4
−
12
5 ⋅ 4

4
−
2
5 =

1

4
2
5

=
1

4
7
5
−1

=
1

4
7
5

⋅ 4 = 4
−
7
5 ⋅ 4

4
3
5 = 4

−
2
5

+1
= 4

−
2
5 ⋅ 41

4
8
5 = 4

3
5

+1
= 4

3
5 ⋅ 41

4
13
5 = 4

8
5

+1
= 4

8
5 ⋅ 41

 

 
The primary reason to set up the pattern using only integer values for the exponents is to 
examine 

€ 

40 as a part of a sequence of numbers written as 

€ 

4n , where n increases by 1. 
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This pattern can be generalized to all positive values of a.  Consider the following table. 
 

€ 

a−3 =
1
a3

a−2 =
1
a2

a−1 =
1
a1

a0 =1
a1 = a
a2 = a ⋅ a
a3 = a ⋅ a ⋅ a

 

 
 
We can verify that the pattern holds by looking at a particular definition of

€ 

an , where n is 
a whole number greater than or equal to 1. In this case, 

€ 

an  is defined as the product of a 
multiplied to itself n times and an+1 is a multiplied to itself n+1 times, which is the same 
as a times the product of a multiplied to itself n times. So, for all positive values of a, 

€ 

an+1 = a ⋅ an .  When n = 0, then

€ 

a0+1 = a ⋅ a0 .  Since 

€ 

a0+1 = a1 = a, it follows then that 

€ 

a0  
must be equal to 1.   
 
As in the specific case of a = 4 above, the general pattern of 

€ 

an+1 = an ⋅ a does hold for 
any values for n. However, it is important to realize that this pattern will not hold for all 

values of a. For example 

€ 

a
1
2  is not a real number if a is any negative real number.  

 
 

Mathematical Focus 5 
Defining a0 = 1 for a ≠ 0  is consistent with pattern established by the graph of f (x) = ax  
for a > 0  and x ≠ 0 . 
 
Another approach to explore this problem is through a graphical representation of the 
function 

€ 

y = ax  for various real values of a.  The following graph depicts 

€ 

y = 2x .  The 
value of 

€ 

20 appears to be equal to 1. 
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no data Function Plot

 
 
If we were to examine this more generally, the behavior of 

€ 

y = ax at x = 0 can be 
explored graphically for several positive values of a. This can be investigated 
dynamically using the slider feature in Fathom.  The graph below represents 

€ 

y = ax  
where the value of a is indicated by the slider.  In this case a = 3.60.  As the value on the 
slider is changed, the graph is updated automatically to reflect the change.  The value 

€ 

a0 =1 can be interpolated from the graph for any positive value of a 
 

0

1

2

3

4

- 4 - 2 0 2 4
x

y = Ax

no data Function Plot
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A  = 3.60 

0 1 2 3 4 5 6 7 8  
In fact, the point (0, 1) appears to be the common point for graphs of functions given by 

€ 

y = ax , a>0, as we can see when the graphs of 

€ 

y = ax  for positive values of a are traced in 
the following Geometer’s Sketchpad sketch.  
 

 
 

As mentioned in other foci, the assumptions placed on the value represented by a are 
important. In all the graphs given previously, it is assumed that a represents a positive 
non-zero real number. These graphs break down if a represents a non-zero negative 
number. For example, the graph of y = (-2)x is not a continuous and well-defined graph, 
since the function y = (-2)x is well-defined in the real number system only over a set of 
measure zero. 
 
Other pertinent assumptions that underlie the above graphical argument are that the 
function 

€ 

y = ax  is a well-defined and continuous function. The inferences drawn from the 
graphs above are based on these assumptions. If these assumptions are ignored, then the 
inferences drawn may be incorrect. For example, consider the graph of the function 

€ 

y = x ⋅ sin 1
x

⎛ 
⎝ 
⎞ 
⎠ 

 given below. 
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This graph looks smooth and the function seems to be well-defined. Therefore, the limit 
of the function as x approaches 0 may be estimated as 0. However, this inference is 
incorrect. This incorrect inference is easy to come to due to an issue of scale of the graph. 

€ 

y = x ⋅ sin 1
x

⎛ 
⎝ 
⎞ 
⎠ 

 is a function that oscillates with ever decreasing amplitude as x approaches 

0. Although this amplitude approaches 0, it never attains the value of 0. Thus, regardless 
of how close to 0 the value of x is, the graph of the function will look like the given 

graph. Thus, the lim
x→0

x ⋅ sin 1
x

⎛
⎝⎜

⎞
⎠⎟

 does not exist, as this value never approaches a single 

value. 
 

Mathematical Focus 6 
Defining a0 = 1 for a ≠ 0  makes the function f (x) = ax  continuous everywhere,  for 
a > 0 . 
 
Consider the function f (x) = 2x . For this function to be continuous over all real 

€ 

x , 

€ 

f 0( )  
will have to be defined. To define 

€ 

f 0( ) , consider 

€ 

lim
x→0

2x( ) . To estimate 

€ 

lim
x→0

2x( )  

numerically, examine values of 

€ 

f (x) = 2x  near 

€ 

x = 0 .  
 

x 2x  
-0.0004 0.99972278 
-0.0003 0.999792077 
-0.0002 0.99986138 
-0.0001 0.999930688 

0 ? 
0.0001 1.000069317 
0.0002 1.000138639 
0.0003 1.000207966 
0.0004 1.000277297 
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As the values of 

€ 

x  approach zero, the values of 

€ 

f (x) = 2xapproach 1; therefore, it 
appears that 

€ 

lim
x→0

2x( ) =1. This procedure can be expanded to all positive values for a.   

 
To prove that 

€ 

lim
x→0

ax( ) =1 (for positive values of a), show that for each 

€ 

ε > 0  there exists a 

€ 

δ > 0  such that 

€ 

ax −1 < ε  when 

€ 

0 < x − 0 < δ .  

 
Let ε > 0  such that 

€ 

ax −1 < ε . Now consider the following, 

 

      ax −1 < ε

⇒ −ε < ax −1 < ε
⇒1− ε < ax < 1+ ε  
 
Case 1: 0 < ε < 1  
 
Now,  
      1− ε < ax < 1+ ε
⇒ ln 1− ε( ) < x ⋅ lna < ln 1+ ε( )

⇒
ln 1− ε( )

lna
< x <

ln 1+ ε( )
lna  

In this case, choose δ = max
ln 1− ε( )
lna

,
ln 1+ ε( )
lna

⎧
⎨
⎩

⎫
⎬
⎭

.  

Therefore, x < δ . 

 
Case 2: ε ≥ 1  
 

In this case, choose δ =
ln 1+ ε( )
lna

. 

Therefore, x < δ . 

Thus, 

€ 

lim
x→0

ax( ) =1. 
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Mathematical Focus 7 
Defining a0 = 1 for a ≠ 0  allows us to extend the domain of f (x) = x0  to non-zero 
complex numbers.  
 
Thus far we have considered the value of a0 only when a is a nonzero real number.  We 
can also consider the value of this expression when a is a complex number not equal to 
zero.  First, consider the case when a = i.  Begin with the imaginary unit raised to an 
integer power.  Using the definition of , , then the following hold: 

 

 

 
The powers of the imaginary unit rotate around the unit circle on the complex plane. 
Therefore, since  and , it follows that .   
 
We can also consider the value of any complex, non-zero number raised to the zero 
power by rewriting  in polar form and applying DeMoivre’s theorem, 

.  Thus,  

. 
 Since r is a real, nonzero number, r0 = 1 and we can conclude that (a+bi)0 equals one 
providing a and b are not both equal to zero.  Thus a0 = 1 not only for real, non-zero 
values of a but for complex, non-zero values as well.    
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